Abstract

Symbolic planning methods have proved to be challenging in robotics due to partial observability and noise as well as unavoidable exceptions to rules that symbol semantics depend on. Often the symbols that a robot considers to support for planning are brittle, making them unsuited for even relatively short term use. Maturing probabilistic methods in robotics, however, are providing a sound basis for symbol grounding that supports using probabilistic distributions over symbolic entities as the basis for planning. In this paper, we describe a belief-space planner that stabilizes the semantics of feedback from the environment by actively interacting with a scene. When distributions over higher-level abstractions stabilize, powerful symbolic planning techniques can provide reliable guidance for problem solving. We present such an approach in a hybrid planning scheme that actively controls uncertainty and yields robust state estimation with bounds on uncertainty that can make effective use of powerful symbolic planning techniques. We illustrate the idea in a hybrid planner for autonomous construction tasks with a real robot system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.