Abstract
A combined approach based on drug complexation with cyclodextrins, and complex entrapment in nanoclays has been investigated, to join in a single delivery system the benefits of these carriers and potentiate their ability to improve the dissolution properties of oxaprozin (OXA), a poorly water-soluble anti-inflammatory drug. Based on previous studies, randomly methylated ß-cyclodextrin (RAMEB) was chosen as the most effective cyclodextrin for OXA complexation. Adsorption equilibrium studies performed on three different clays (sepiolite, attapulgite, bentonite) allowed selection of sepiolite (SV) for its greater adsorption power towards OXA. DSC and XRPD studies indicated drug amorphization in both binary OXA-RAMEB coground and OXA-SV cofused products, due to its complexation or very fine dispersion in the clay structure, respectively. The drug amorphous state was maintained also in the ternary OXA-RAMEB-SV cofused system. Dissolution studies evidenced a clear synergistic effect of RAMEB complexation and clay nanoencapsulation in improving the OXA dissolution properties, with an almost 100% increase in percent dissolved and dissolution efficiency compared to the OXA-RAMEB coground system. Therefore, the proposed combined approach represents an interesting tool for improving the therapeutic effectiveness of poorly soluble drugs, and reducing the CD amount necessary for obtaining the desired drug solubility and dissolution rate increase.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.