Abstract
In this paper we propose a comparative study of Artificial Neural Networks (ANN) and Artificial Immune Systems. Artificial Immune Systems (AIS) represent a novel paradigm in the field of computational intelligence based on the mechanisms that allow vertebrate immune systems to face attacks from foreign agents (called antigens). Several similarities as well as differences have been shown by Dasgupta in [1]. Here we present a comparative study of these two approaches considering evolutions of the concepts of ANN and AIS, respectively hybrid neural systems, Artificial Immune Recognition Systems (AIRS) and aiNet. We tried to establish a comparison among these three methods using a well known dataset, namely the Wisconsin Breast Cancer Database. We observed interesting trends in systems’ performances and capabilities. Peculiarities of these systems have been analyzed, possible strength points and ideal contexts of application suggested. These and other considerations will be addressed in the rest of this manuscript.KeywordsArtificial Neural NetworkArtificial Immune SystemForeign AgentArtificial Immune Recognition SystemStrength PointThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.