Abstract

AbstractIn this paper we describe a hybrid architecture for classification of cardiac arrhythmias taking as a source the ECG records MIT-BIH Arrhythmia database. The Samples were taken from the LBBB, RBBB, PVC and Fusion Paced and Normal arrhythmias, as well as the normal heartbeats. These were segmented and transformation and 3 methods of classification were used: Fuzzy KNN, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, we used a Mamdani type fuzzy inference system to combine the outputs of each classifier, and we achieved a very high classification rate of 98%.KeywordsFuzzy KNNMamdani Fuzzy SystemNeural NetworkArrhythmia Classification

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.