Abstract

Semiempirical molecular orbital theory has been used to study the effects of solvation by acetonitrile on the Stevens rearrangement of methylammonium formylmethylide to 2-aminopropanal. Three methods of solvation have been used to investigate both the electrostatic and specific solvent–solute effects of solvation: a supermolecule calculation involving the complete geometry optimization of up to six solvent molecules about the solute, the conductor-like screening model (COSMO) polarizable continuum method which allows for geometry optimization of the solute in a solvent defined by its dielectric constant, and a hybrid method in which up to five solvent molecules are incorporated inside the solute cavity and complete geometry optimization of the complex is carried out within the polarizable continuum. A comparison of the calculated geometries, rearrangement activation energies, and enthalpies of solvation from these approaches is presented, and the explicit versus bulk solvation effects are discussed. The overall effect of all methods for incorporating solvation effects is that the radical pair pathway is perferred over the concerted mechanism. © 1996 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.