Abstract

A great deal of attention has been paid on layered manganese dioxide (δ-MnO2 ) as promising cathode candidate for aqueous zinc-ion battery (ZIB) due to the excellent theoretical capacity, high working voltage and Zn2+ /H+ co-intercalation mechanism. However, caused by the insertion of Zn2+ , the strong coulomb interaction and sluggish diffusion kinetics have resulted in significant structure deformation, insufficient cycle stability and limited rate capability. And it is still far from satisfactory to accurately modulate H+ intercalation for superior electrochemical kinetics. Herein, the terrace-shape δ-MnO2 hybrid superlattice by polyvinylpyrrolidone (PVP) pre-intercalation (PVP-MnO2 ) was proposed with the state-of-the-art ZIBs performance. Local atomic structure characterization and theoretical calculations have been pioneering in confirming the hybrid superlattice-triggered synergy of electron entropy stimulation and selective H+ Grotthuss intercalation. Accordingly, PVP-MnO2 hybrid superlattice exhibits prominent specific capacity (317.2 mAh g-1 at 0.125 A g-1 ), significant rate performance (106.1 mAh g-1 at 12.5 A g-1 ), and remarkable cycle stability at high rate (≈100 % capacity retention after 20,000 cycles at 10 A g-1 ). Therefore, rational design of interlayer configuration paves the pathways to the development of MnO2 superlattice for advanced Zn-MnO2 batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call