Abstract

Superhydrophobic materials have shown tremendous potential in various fields. However, the adhesion, wetting, and pinning of low-surface-tension liquids greatly limit their multifunctional applications. Therefore, the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable. In this study, we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanoparticles, organosilanes, and waterborne epoxy resin via a versatile spray-coating technique. The coating exhibited high contact angles (> 151°) and low sliding angles (< 7°) for water and oil liquids, demonstrating excellent superamphiphobic characteristics. Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating. The corrosion potential shifted positively by 590 mV, and the corrosion current density decreased by four orders of magnitude. Additionally, the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure, showcasing superior anti-corrosion capacity. Freezing tests of water droplets at –10 °C and –15 °C confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength. We believe that the designed superamphiphobic coating with integrated functionalities of self-cleaning, anti-corrosion, anti-icing, and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call