Abstract

Transactional memory (TM) has long been advocated as a promising pathway to more automated concurrency control for scaling concurrent programs running on parallel hardware. Software TM (STM) has the benefit of being able to run general transactional programs, but at the significant cost of overheads imposed to log memory accesses, mediate access conflicts, and maintain other transaction metadata. Recently, hardware manufacturers have begun to offer commodity hardware TM (HTM) support in their processors wherein the transaction metadata is maintained "for free" in hardware. However, HTM approaches are only best-effort: they cannot successfully run all transactional programs, whether because of hardware capacity issues (causing large transactions to fail), or compatibility restrictions on the processor instructions permitted within hardware transactions (causing transactions that execute those instructions to fail). In such cases, programs must include failure-handling code to attempt the computation by some other software means, since retrying the transaction would be futile. Thus, a canonical use of HTM is lock elision: replacing lock regions with transactions, retrying some number of times in the case of conflicts, but falling back to locking when HTM fails for other reasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call