Abstract

Power system state estimation is classically formulated as a weighted least squares (WLS) optimization problem over the real domain, with the state variables being the voltage magnitudes and angles or the voltage real and imaginary parts. Although the voltages in ac networks are complex variables, a solution in the complex domain has not been previously reported; this is because a real function of complex variables is nonanalytic in its arguments, i.e., the Taylor series expansion in its arguments alone does not exist. By making use of the Wirtinger calculus, this paper presents a new implementation of the WLS state estimation problem in complex variables. The partial derivatives employed in the method give rise to a structure that is very simple to implement. The method can straightforwardly handle both legacy and phasor measurements; particularly, the processing of phasor current measurements does not require any special provisions, unlike previously reported hybrid state estimator implementations over the real domain. Numerical results are reported on networks with up to 9241 nodes, and they demonstrate that the accuracy of the complex variable implementation is competitive with that of the real variable constrained hybrid state estimator, while being significantly faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.