Abstract
We present a hybrid equation of state (EoS) for dense matter in which a nuclear matter phase is described within the Dirac-Brueckner-Hartree-Fock (DBHF) approach and a two-flavor quark matter phase is modelled according to a recently developed covariant, nonlocal chiral quark model. We show that modern observational constraints for compact star masses ($M~2{M}_{\ensuremath{\bigodot}}$) can be satisfied when a small vector-like four quark interaction is taken into account. The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy ion collisions and points to a deconfinement transition at about 0.55 fm${}^{\ensuremath{-}3}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.