Abstract
Spectral computed tomography (CT) is a powerful diagnostic tool offering quantitative material decomposition results that enhance clinical imaging by providing physiologic and functional insights. Iodine, a widely used contrast agent, improves visualization in various clinical contexts. However, accurately detecting low-concentration iodine presents challenges in spectral CT systems, particularly crucial for conditions like pancreatic cancer assessment. In this study, we present preliminary results from our hybrid spectral CT instrumentation which includes clinical-grade hardware (rapid kVp-switching x-ray tube, dual-layer detector). This combination expands spectral datasets from two to four channels, wherein we hypothesize improved quantification accuracy for low-dose and low-iodine concentration cases. We modulate the system duty cycle to evaluate its impact on quantification noise and bias. We evaluate iodine quantification performance by comparing two hybrid weighting strategies alongside rapid kVp-switching. This evaluation is performed with a polyamide phantom containing seven iodine inserts ranging from 0.5 to 20 mg/mL. In comparison to alternative methodologies, the maximum separation configuration, incorporating data from both the 80 kVp, low photon energy detector layer and the 140 kVp, high photon energy detector layer produces spectral images containing low quantitative noise and bias. This study presents initial evaluations on a hybrid spectral CT system, leveraging clinical hardware to demonstrate the potential for enhanced precision and sensitivity in spectral imaging. This research holds promise for advancing spectral CT imaging performance across diverse clinical scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.