Abstract
Hybridization and polyploidy are now hypothesized to have regularly stimulated speciation in angiosperms, but individual or combined involvement of these two processes seems to involve significant differences in pathways of formation, establishment and evolutionary consequences of resulting lineages. We evaluate here the classical cytological hypothesis that ploidy in hybrid speciation is governed by the extent of chromosomal rearrangements among parental species. Within a phylogenetic framework, we calculate genetic divergence indices for 50 parental species pairs and use these indices as surrogates for the overall degree of genomic divergence (that is, as proxy for assessments of dissimilarity of the parental chromosomes). The results confirm that genomic differentiation between progenitor taxa influences the likelihood of diploid (homoploid) versus polyploid hybrid speciation because genetic divergence between parents of polyploids is found to be significantly greater than in the case of homoploid hybrid species. We argue that this asymmetric relationship may be reinforced immediately after hybrid formation, during stabilization and establishment. Underlying mechanisms potentially producing this pattern are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.