Abstract

THE origin of a new diploid species via hybridization is theoretically difficult because it requires the development of reproductive isolation in sympatry. In the absence of isolation, the hybrid genotype will be overcome by gene flow with its parents. According to genetic models1-3, reproductive isolation can be facilitated by rapid karyotypic evolution in the recombinant hybrid. Here we use comparative linkage mapping4-5 to demonstrate extensive genomic reorganization in the hybrid species Helianthm anomalus, relative to its parents H. annuus and H. petiolaris. The unprecedented detail provided by the linkage maps indicates that rapid karyotypic evolution in H. anomalus results from the merger of pre-existing structural differences between the parents, as well as chromosomal rearrangements apparently induced by recombination. Moreover, determination of the parental origin of mapped loci in H. anomalus suggests that parental genomic structure has influenced hybrid genomic composition by protecting several large linkage blocks from recombination during speciation. These mapping data, when combined with previous meiotic analyses6 and evidence of semisterility between the hybrid and its parents6,7, satisfy genetic models for speciation through hybrid recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call