Abstract
In reservoir engineering, the knowledge of Pressure–Volume–Temperature (PVT) properties is of great importance for many uses, such as well test analyses, reserve estimation, material balance calculations, inflow performance calculations, fluid flow in porous media and the evaluation of new formations for the potential development and enhancement oil recovery projects. The determination of these properties is a complex problem because laboratory-measured properties of rock samples (“cores”) are only available from limited and isolated well locations and/or intervals. Several correlation models have been developed to relate these properties to other measures which are relatively abundant. These models include empirical correlations, statistical regression and artificial neural networks (ANNs). In this paper, a comprehensive study is conducted on the prediction of the bubble point pressure and oil formation volume factor using two hybrid of soft computing techniques; a genetically optimised neural network and a genetically enhanced subtractive clustering for the parameter identification of an adaptive neuro-fuzzy inference system. Simulation experiments are provided, showing the performance of the proposed techniques as compared with commonly used regression correlations, including standard artificial neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.