Abstract

A systematic simulation study of the $n/m=1/1$ instability driven by energetic counter-passing particles in tokamak plasmas has been carried out using the kinetic-MHD (Magnetohydrodynamics) hybrid code M3D-K. The safety factor's radial profile is monotonically increasing with central value $q_0$ less than unity. The linear simulation results show that the instability is either a $m/n=1/1$ energetic particle mode or a $m/n=1/1$ global Alfvén eigenmode depending on the value of the central safety factor. The mode frequencies are close to the tip of Alfvén continuum spectrum at the magnetic axis. The excited modes are radially localized near the magnetic axis well within the safety factor $q=1$ surface. The main wave particle resonance is found to be $\omega _\phi +2\omega _\theta =\omega$ , where ω is the mode frequency. The nonlinear simulation results show that there is a long period of quasi-steady-state saturation phase with frequency chirping up after initial saturation. Correspondingly, the energetic particle distribution with low energies is flattened in the core of the plasma. After this quasi-steady phase, the mode amplitude grows again and frequency jumps down to a low value corresponding to a new mode similar to the energetic co-passing particle-driven low-frequency fishbone while the energetic particle distribution is flattened for higher energies in the core of plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call