Abstract

In this paper, a hybrid simulation test method is used to study the cooperative deformation of nonlinear steel-cable structures. The general structural deformation analysis methods include the overall structure model test method and the numerical simulation method. The overall structure model test method is costly and the process is complicated; the numerical simulation method requires high requirements and requires prior knowledge of the constitutive relationship of the structure or component. The hybrid simulation test method combines the advantages of the two, that is, the entire structure is divided into two, one part is used as a test substructure for model testing, and the other is used as a numerical substructure for numerical simulation. In this study, the nonlinear cable is used as the experimental substructure for model test, and the rest of the cable is used as the numerical substructure for numerical simulation. Through the synchronous interactive feedback of the data between the two, the combined deformation of the nonlinear frame-type steel-cable structure is gradually obtained. Finally, the results of the hybrid simulation test are compared with the results of the numerical simulation test to verify the effectiveness of the hybrid simulation test method. The research in this paper can provide a new method for the combined deformation calculation of nonlinear steel-cable structures.

Highlights

  • 在混合仿真试验中,试验子结构模型试验同样采用 100mm长4mm粗的尼龙绳索。每个子步由数值子结构计算 得到 x,由试验子结构反馈得到 X 。再由 P - X 关系计算 得到 P 。从而以试验子结构的拉索拉力 X 为桥梁,建立 起了跨中荷载 P 与杆端水平位移( ∆ )以及拉索跨中挠度 ( )的关系。

  • a hybrid simulation test method is used to study the cooperative deformation of nonlinear steel-cable structures

  • one part is used as a test substructure for model testing

Read more

Summary

Introduction

在混合仿真试验中,试验子结构模型试验同样采用 100mm长4mm粗的尼龙绳索。每个子步由数值子结构计算 得到 x ,由试验子结构反馈得到 X 。再由 P - X 关系计算 得到 P 。从而以试验子结构的拉索拉力 X 为桥梁,建立 起了跨中荷载 P 与杆端水平位移( ∆ )以及拉索跨中挠度 ( )的关系。. 木工程与力学实验室现有设备及利用C++语言自行编写 位移相等考虑钢圆柱杆对拉索的约束作用[8,9,10]。本文中 的数据通讯软件(PCS8000-Matlab-Interface,PMI)[4,5,6], 钢-索结构数值子结构与试验子结构的划分如图2所示。混 A点的水平位移,θ 为杆端拉索轴线方向与水平方向的夹 角)。因此该结构不仅是材料非线性问题,而且是几何非 线性问题。本文考虑拉索的伸长变形以及夹角变化,采用 虚功原理推导杆端A点水平位移( ∆ )及拉索跨中挠度( ) 的计算公式[11]。该结构为对称结构,可简化为其半边结 构计算,如图5所示。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call