Abstract

This paper analyzes the interaction of high Rayleigh number flow with conjugate heat transfer. The two-relaxation time lattice Boltzmann is used as a turbulent buoyancy-driven flow solver whereas the implicit finite difference technique is applied as a heat transfer solver. An in-house numerical code is developed and successfully validated on typical CFD problems. The impact of the Biot number, heat diffusivity ratio and the Rayleigh number on turbulent fluid flow and heat transfer patterns is studied. It is revealed that the thermally-conductive walls of finite thickness reduce the heat transfer rate. The temperature of the cooled wall slightly depends on the value of the buoyancy force. The heat diffusivity ratio has a significant effect on thermal and flow behavior. The Biot number significantly affects the mean Nusselt number at the right solid–fluid interface whereas the mean Nusselt number at the left interface is almost insensible to the Biot number variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.