Abstract

Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.