Abstract

The multiphase simulations are conducted with the kinetic-magnetohydrodynamics hybrid code MEGA to investigate the spatial and the velocity distributions of lost fast ions due to the Alfvén eigenmode (AE) bursts in the Large Helical Device plasmas. It is found that fast ions are lost along the divertor region with helical symmetry both before and during the AE burst except for the promptly lost particles. On the other hand, several peaks are present in the spatial distribution of lost fast ions along the divertor region. These peaks along the divertor region can be attributed to the deviation of the fast-ion orbits from the magnetic surfaces due to the grad-B and the curvature drifts. For comparison with the velocity distribution of lost fast ions measured by the fast-ion loss detector (FILD), the ‘numerical FILD’ which solves the Newton–Lorentz equation is constructed in the MEGA code. The velocity distribution of lost fast ions detected by the numerical FILD during AE burst is in good qualitative agreement with the experimental FILD measurements. During the AE burst, fast ions with high energy (100–180 keV) are detected by the numerical FILD, while co-going fast ions lost to the divertor region are the particles with energy lower than 50 keV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.