Abstract
The results of one dimensional hybrid simulation of standing Alfvén wave in low beta plasma are presented. Plasma is accelerated from the anti-nodes toward the nodes of the standing waves with finite amplitude under the action of the variable magnetic field pressure. As a result, a sharp maximum of the number density (and electron pressure) arises near the nodes of the standing wave. The plasma flow is spatially modulated with half wavelength of the driving Alfvén wave. Standing ion-acoustic waves produced by spatial modulation of the flow are observed in hybrid simulation. The effective parallel electric field E ∗ = E + 1 ne ∇ p e appears due to both electron pressure gradient near the nodes and electron pressure variations in the acoustic waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.