Abstract
SummaryThe implementation of system‐wide signal optimization models requires efficient solution algorithms that can quickly generate optimal or near‐optimal signal timings. This paper presents a hybrid algorithm based on simulated annealing (SA) and a genetic algorithm (GA) for arterial signal timing optimization. A decoding scheme is proposed that exploits our prior expectations about efficient solutions, namely, that the optimal green time distribution should reflect the proportion of the critical lane volumes of each phase. An SA algorithm, a GA algorithm and a hybrid SA‐GA algorithm are developed here using the proposed decoding scheme. These algorithms can be adapted to a wide range of signal optimization models and are especially suitable for those optimizing phase sequences with oversaturated intersections. To comparatively evaluate the performance of the proposed algorithms, we apply them to a signal optimization model for oversaturated arterial intersections based on an enhanced cell transmission model. The numerical results indicate that the SA‐GA algorithm outperforms both SA and GA in terms of solution quality and convergence rate. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.