Abstract

Four leather substrates from different animals were treated by dispersions containing hydrophilic composite silica-hyperbranched poly(ethylene imine) xerogels. Antimicrobial activity was introduced by incorporating silver nanoparticles and/or benzalkonium chloride. The gel precursor solutions were also infused before gelation to titanium oxide powders typically employed for induction of self-cleaning properties. The dispersions from these biomimetically premade xerogels integrate environmentally friendly materials with short coating times. Scanning electron microscopy (SEM) provided information on the powder distribution onto the leathers. Substrate and coating composition were estimated by infrared spectroscopy (IR) and energy-dispersive X-ray spectroscopy (EDS). Surface hydrophilicity and water permeability were assessed by water-contact angle experiments. The diffusion of the leather's initial components and xerogel additives into the water were measured by Ultraviolet-Visible (UV-Vis) spectroscopy. Protection against GRAM- bacteria was tested for Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae against GRAM+ bacteria for Staphylococcus aureus and Enterococcus faecalis and against fungi for Candida albicans. Antibiofilm capacity experiments were performed against Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis, and Candida albicans. The application of xerogel dispersions proved an adequate and economically feasible alternative to the direct gel formation into the substrate's pores for the preparation of leathers intended for medical uses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call