Abstract
A sub-structuring approach, along with a unit cell treatment, is proposed to model expansion chamber silencers with internal partitions and micro-perforated panels (MPPs) in the absence of internal flow. The side-branch of the silencer is treated as a combination of unit cells connected in series. It is shown that, by connecting multiple unit cells with varying parameters, the noise attenuation bandwidth can be enlarged. With MPPs, the hybrid noise attenuation mechanism of the silencer is revealed. Depending on the size of the perforation hole, noise attenuation can be dominated by dissipative, reactive, or combined effects together. For a broadband sound absorption, the hole size, together with the perforation ratio and other parameters, can be optimized to strike a balance between the dissipative and reactive effect, for ultimately achieving the desired noise attenuation performance within a prescribed frequency region. The modular nature of the proposed formulation allows doing this in a flexible, accurate, and cost effective manner. The accuracy of the proposed approach is validated through comparisons with finite element method and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.