Abstract
AbstractIn CP literature combinatorial design problems such as sport scheduling, Steiner systems, error-correcting codes and more, are typically solved using Finite Domain (FD) models despite often being more naturally expressed as Finite Set (FS) models. Existing FS solvers have difficulty with such problems as they do not make strong use of the ubiquitous set cardinality information. We investigate a new approach to strengthen the propagation of FS constraints in a tractable way: extending the domain representation to more closely approximate the true domain of a set variable. We show how this approach allows us to reach a stronger level of consistency, compared to standard FS solvers, for arbitrary constraints as well as providing a mechanism for implementing certain symmetry breaking constraints. By experiments on Steiner Systems and error correcting codes, we demonstrate that our approach is not only an improvement over standard FS solvers but also an improvement on recently published results using FD 0/1 matrix models as well.KeywordsMatrix ModelConstraint Satisfaction ProblemGlobal ConstraintFinite DomainCardinality ConstraintThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.