Abstract
In this paper, a new hybrid despeckling method, based on Undecimated Dual-Tree Complex Wavelet Transform (UDT-CWT) using maximum a posteriori (MAP) estimator and non-local Principal Component Analysis (PCA)-based filtering with local pixel grouping (LPG-PCA), was proposed. To achieve a heterogeneous-adaptive speckle reduction, SAR image is classified into three classes of point targets, details, or homogeneous areas. The despeckling is done for each pixel based on its class of information. Logarithm transform was applied to the SAR image to convert the multiplicative speckle into additive noise. Our proposed method contains two principal steps. In the first step, denoising was done in the complex wavelet domain via MAP estimator. After performing UDT-CWT, the noise-free complex wavelet coefficients of the log-transformed SAR image were modeled as a two-state Gaussian mixture model. Furthermore, the additive noise in the complex wavelet domain was considered as a zero-mean Gaussian distribution. In the second step, after applying inverse UDT-CWT, an iterative LPG-PCA method was used to smooth the homogeneous areas and enhance the details. The proposed method was compared with some state-of-the-art despeckling methods. The experimental results showed that the proposed method leads to a better speckle reduction in homogeneous areas while preserving details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.