Abstract

This paper presents a new run-time power management technique for real-time embedded systems which consist of a voltage scalable processor and power controllable peripheral devices. We have observed that there exist significant trade-offs in terms of energy consumption between the Dynamic Power Management (DPM) scheme and the Dynamic Voltage Scaling (DVS) scheme over a wide range of system operating conditions. The proposed technique fully exploits workload-variation slack time by partitioning the task into several timeslots and shut down the unneeded peripheral device on timeslot-by-timeslot basis. Through extensive simulations, the novelty and the usefulness of the proposed technique are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call