Abstract
ABSTRACTIn many application domains of recommender systems, content-based (CB) information are available for users, objects or both. CB information plays an important role in the process of recommendation, especially in cold-start scenarios, where the volume of feedback data is low. However, CB information may come from several, possibly external, sources varying in reliability, coverage or relevance to the recommending task. Therefore, each content source or attribute possess a different level of informativeness, which should be taken into consideration during the process of recommendation. In this paper, we propose a Content-Aligned Bayesian Personalized Ranking Matrix Factorization method (CABPR), extending Bayesian Personalized Ranking Matrix Factorization (BPR) by incorporating multiple sources of content information into the BPR’s optimization procedure. The working principle of CABPR is to calculate user-to-user and object-to-object similarity matrices based on the content information and penalize differences in latent factors of closely related users’ or objects’. CABPR further estimates relevance of similarity matrices as a part of the optimization procedure. CABPR method is a significant extension of a previously published BPR_MCA method, featuring additional variants of optimization criterion and improved optimization procedure. Four variants of CABPR were evaluated on two publicly available datasets: MovieLens 1M dataset, extended by data from IMDB, DBTropes and ZIP code statistics and LOD-RecSys dataset extended by the information available from DBPedia. Experiments shown that CABPR significantly improves over standard BPR as well as BPR_MCA method w.r.t. several cold-start scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.