Abstract
The summation and multiplication are two basic operations for secure multiparty quantum computation. The existing secure multiparty quantum summation and multiplication protocols have (n, n) threshold approach and their computation type is bit-by-bit, where n is total number of players. In this paper, we propose two hybrid (t, n) threshold quantum protocols for secure multiparty summation and multiplication based on the Shamir’s secret sharing, SUM gate, quantum fourier transform, and generalized Pauli operator, where t is a threshold number of players that can perform the summation and multiplication. Their computation type is secret-by-secret with modulo d, where d, n ≤ d ≤ 2n, is a prime. The proposed protocols can resist the intercept-resend, entangle-measure, collusion, collective, and coherent quantum attacks. They have better computation as well as communication costs and no player can get other player’s private input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.