Abstract
Leveraging the current generation of quantum devices to solve optimization problems of practical interest necessitates the development of hybrid quantum-classical (HQC) solution approaches. In this paper, a multi-cut Benders decomposition (BD) approach that exploits multiple feasible solutions of the master problem (MP) to generate multiple valid cuts is adapted, so as to be used as an HQC solver for general mixed-integer linear programming (MILP) problems. The use of different cut selection criteria and strategies to manage the size of the MP by eliciting a subset of cuts to be added in each iteration of the BD scheme using quantum computing is discussed. The HQC optimization algorithm is applied to the Unit Commitment (UC) problem. UC is a prototypical use case of optimization applied to electrical power systems, a critical sector that may benefit from advances in quantum computing. The proposed approach is demonstrated using the D-Wave Advantage 4.1 quantum annealer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.