Abstract
Currently, completely abiotic channel systems that concurrently reproduce the high selectivity and high permeation rate of natural protein channels are rare. Here, we provide one such biomimetic channel system, i.e., a novel family of helically folded hybrid amide foldamers that can serve as powerful artificial proton channels to mimic key transport features of the exceptionally selective Matrix-2 (M2) proton channels. Possessing an angstrom-scale tubular pore 3 Å in diameter, these low water permeability artificial channels transport protons at a rate 1.22 and 11 times as fast as gramicidin A and M2 channels, respectively, with exceptionally high selectivity factors of 167.6, 122.7, and 81.5 over Cl- , Na+ , and K+ ions. Based on the experimental and computational findings, we propose a novel proton transport mechanism where a proton may create a channel-spanning water chain from two or more short water chains to facilitate its own transmembrane flux via the Grotthuss mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.