Abstract

We describe a nonlinear propagation model based on a generalized Schrödinger equation in the time domain coupled to Gaussian beam evolution through ABCD matrices that account for Kerr lensing in the spatial domain. This model is well suited to simulate propagation in mildly nonlinear systems such as multipass cells for temporal compression. It is validated against both a full ( x , y , z , t ) numerical model and recently reported experimental results in multipass cells, with excellent agreement. It also allows us to identify the physical mechanism for the recently reported parasitic appearance of spectral content in the 700–950 nm range in argon-filled multipass cells that are used to compress pulses at 1030 nm. We think this is due to a quasi-phase-matched degenerate four-wave mixing process. This process could be used in the future to perform wavelength conversion as is already done in fibers and capillaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call