Abstract

The phase-retrieval problem, fundamental in applied physics and engineering, addresses the question of how to determine the phase of a complex-valued function from modulus data and additional a priori information. Recently we identified two important methods for phase retrieval, namely, Fienup's basic input-output and hybrid input-output (HIO) algorithms, with classical convex projection methods and suggested that further connections between convex optimization and phase retrieval should be explored. Following up on this work, we introduce a new projection-based method, termed the hybrid projection-reflection (HPR) algorithm, for solving phase-retrieval problems featuring nonnegativity constraints in the object domain. Motivated by properties of the HPR algorithm for convex constraints, we recommend an error measure studied by Fienup more than 20 years ago. This error measure, which has received little attention in the literature, lends itself to an easily implementable stopping criterion. In numerical experiments we found the HPR algorithm to be a competitive alternative to the HIO algorithm and the stopping criterion to be reliable and robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.