Abstract
Abstract Optimal sizing of peak loads has proven to be an important factor affecting the overall energy consumption of heating ventilation and air-conditioning (HVAC) systems. Uncertainty quantification of peak loads enables optimal configuration of the system by opting for a suitable size factor. However, the representation of uncertainty in HVAC sizing has been limited to probabilistic analysis and scenario-based cases, which may limit and bias the results. This study provides a framework for uncertainty representation in building energy modeling, due to both random factors and imprecise knowledge. The framework is shown by a numerical case study of sizing cooling loads, in which uncertain climatic data are represented by probability distributions and human-driven activities are described by possibility distributions. Cooling loads obtained from the hybrid probabilistic–possibilistic propagation of uncertainty are compared to those obtained by pure probabilistic and pure possibilistic approaches. Results indicate that a pure possibilistic representation may not provide detailed information on the peak cooling loads, whereas a pure probabilistic approach may underestimate the effect of uncertain human behavior. The proposed hybrid representation and propagation of uncertainty in this paper can overcome these issues by proper handling of both random and limited data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.