Abstract
Social media analysis is a powerful tool for tourism research that, at a relatively low cost, can be used to manage and process large datasets of comments, ratings, and shares from different online communities. However, the heterogeneous nature of unsolicited opinions, the complexity of natural language assessment, and differences in the characteristics of social-data sources hinder the accurate assessment of preferences. Likewise, the use of solicited data sources, such as direct polling, is typically resource-intensive, time-consuming, and geographically limited. We analyze a hybrid approach that combines active polling with passive social media analysis to rate tourist experience. To this end, we present a novel multiple criteria decision analysis model for preference-extraction from solicited and unsolicited data. The proposed approach can significantly reduce the number of polls required to accurately assess the preferences of a community, especially when surveying rural destinations, which are sparsely populated geographic areas situated outside cities and towns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.