Abstract

In this paper, a commercial compressed air energy storage (CAES) aggregator equipped with a simple cycle mode operation having the ability to work like a gas turbine is coordinated with a wind power aggregator (WPA) as a hybrid power plant to participate in electricity markets. In the proposed approach, the WPA uses the CAES to tackle its stochastic input and uncertainties related to different electricity market prices, and CAES can also use WPA to manage its charging/discharging and simple cycle modes more economically. A three-stage stochastic decision-making method is used to model the mentioned optimization problem which considers three electricity markets including day-ahead, intraday and balancing markets. The problem is formulated as a mixed integer linear programming which can be solved with available commercial solvers. Also, conditional value-at-risk is added to the problem to control the financial risk of the problem and offer different operation strategies for different financials risk levels. The proposed method can provide both bidding quantity and bidding curves to be submitted to the electricity markets which is tested on a realistic case study based on a wind farm and electricity market located in Spain. The results confirm that the proposed method can provide extra profit in joint operation, have more flexibility and reduce the financial risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.