Abstract
Novel ternary nanocomposites films of Polypyrrole/copper/graphene oxide (PPy/Cu/GO) showed enhanced optical and electronic properties. In this study, PPy/Cu/GO films were synthesized with different GO load (0.0, 0.4, 0.6, and 0.8 wt%) using electrochemical deposition technique. The structural, optical and electrical properties of the composites were evaluated using X-Ray Diffraction (XRD) spectroscopy, UV–visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and four-point probe methods. XRD results reveal that the GO was completely intercalated and dispersed uniformly in the nanocomposites. The results also revealed that the nanocomposite films are crystalline in nature, with distinct peaks corresponding to indexed miller indices. UV-visible analysis revealed that all of the nanocomposites showed good UV absorbance which was significant in the UV–Vis region of ≈450 nm. The energy band gap decreased with increase in GO load and was found within 3.46 to 2.25 eV, across the range of GO load which fall within the range of energy band gap for photovoltaic applications. The SEM results revealed that the nanocomposite films showed unevenly shaped structures with porous surface which increases with increasing GO loading, while the EDX result revealed the presence of carbon, oxygen nitrogen and copper as fundamental elements deposited. The nanocomposites' four-point probe analysis revealed slight increase in conductivity with low GO content. The incorporation of Cu and GO nanoparticles in PPy matrix provides a better balance and thus improved the photovoltaic properties of PPy/Cu/GO making them suitable for photovoltaic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.