Abstract

Nonzero transverse energy flow, which describes phenomenon in which the energy flux of localized light propagates in a plane perpendicular to the optical axis, has attracted enormous interest recently due to its useful application in micromanipulation. We show that the appearance of transverse energy flow in the focal plane of an aplanatic high numerical aperture focusing system is possible. We demonstrate our approach by specially tailoring the input state of polarization. Calculations reveal that number of transverse energy flow rings is controllable and depend on azimuthal index of the input field, thereby giving rise to tunable manipulating locations in optical trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.