Abstract
A hybrid plasmonic–phononic cavity design which enables high vacuum coupling rate has been proposed in lithium niobate (LN) phononic crystals (Phncs) that have been perforated by air holes and coated with thin silver film. By tailoring the geometry, optomechanical interaction between the plasmonic modes (produced by the metal/insulator) and the phononic modes (confined by the phononic bandgap effect) is greatly enhanced. Numerical results based on finite-element method (FEM) reveal that in this hybrid plasmonic–phononic design, high vacuum coupling rate that predominantly contributed by moving boundary effect is on the order of 106 Hz, which is about one to two orders higher than that contributed by photoelastic effect shown in conventional phoxonic crystal designs. Results evidence how the vacuum coupling rate depends on geometrical parameters like the radius of the defect air hole, the thickness of silver layer, and LN layer. The simultaneous confinement and strong coupling, combined with other advantages as lack of constraint to the refractive index, and integration of piezoelectric material and metal in a chip, this hybrid design may be suitable for non-invasive biological sensing, optomechanically tunable plasmonic heater for drug release and lab-on-chip devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.