Abstract

Thermal management in hybrid Photovoltaic/Thermal (PVT) collectors is essential to derive electrical and thermal energy from a single system. Effective removal of heat gained by the photovoltaic module during its operation is possible with a proper thermal absorber design. Hence, thermal absorber design has gained prominence, and various design techniques were attempted in the literature to enhance energy delivery among different stakeholders. Most research groups tried to design absorber configurations attached to the PV panel's front or rear side. Absorber design configurations include various channel materials and geometry as well as other physical parameter combinations. The quantitative thermal energy delivery from the system could vary based on the absorber configuration and be useful for different applications. This study reports a detailed review to understand the relation between thermal absorber design configurations and the potential energy recovery from PVT systems. This study helps the designers identify channel designs, materials, and adequate working fluids for enhanced heat transfer to anticipate better thermal management of PVT systems. Challenges and suggestions to develop state of the art thermal absorber designs for relative commercial thermal applications using PVT systems are conveyed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call