Abstract

Metallic and plasmonic nanolasers have attracted growing interest recently. Plasmonic lasers demonstrated so far operate in hybrid photon-plasmon modes in transverse dimensions, rendering it impossible to separate photonic from plasmonic components. Thus only the far-field photonic component can be measured and utilized directly. But spatially separated plasmon modes are highly desired for applications including high-efficiency coupling of single-photon emitters and ultrasensitivity optical sensing. Here, we report a nanowire (NW) laser that offers subdiffraction-limited beam size and spatially separated plasmon cavity modes. By near-field coupling a high-gain CdSe NW and a 100 nm diameter Ag NW, we demonstrate a hybrid photon-plasmon laser operating at 723 nm wavelength at room temperature, with a plasmon mode area of 0.008λ(2). This device simultaneously provides spatially separated photonic far-field output and highly localized coherent plasmon modes, which may open up new avenues in the fields of integrated nanophotonic circuits, biosensing, and quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call