Abstract
Crop phenology regulates seasonal agroecosystem carbon, water, and energy exchanges, and is a key component in empirical and process-based crop models for simulating biogeochemical cycles of farmlands, assessing gross and net primary production, and forecasting the crop yield. The advances in phenology matching models provide a feasible means to monitor crop phenological progress using remote sensing observations, with a priori information of reference shapes and reference phenological transition dates. Yet the underlying geometrical scaling assumption of models, together with the challenge in defining phenological references, hinders the applicability of phenology matching in crop phenological studies. The objective of this study is to develop a novel hybrid phenology matching model to robustly retrieve a diverse spectrum of crop phenological stages using satellite time series. The devised hybrid model leverages the complementary strengths of phenometric extraction methods and phenology matching models. It relaxes the geometrical scaling assumption and can characterize key phenological stages of crop cycles, ranging from farming practice-relevant stages (e.g., planted and harvested) to crop development stages (e.g., emerged and mature). To systematically evaluate the influence of phenological references on phenology matching, four representative phenological reference scenarios under varying levels of phenological calibrations in terms of time and space are further designed with publicly accessible phenological information. The results indicate that the hybrid phenology matching model can achieve high accuracies for estimating corn and soybean phenological growth stages in Illinois, particularly with the year- and region-adjusted phenological reference (R-squared higher than 0.9 and RMSE less than 5 days for most phenological stages). The inter-annual and regional phenological patterns characterized by the hybrid model correspond well with those in the crop progress reports (CPRs) from the USDA National Agricultural Statistics Service (NASS). Compared to the benchmark phenology matching model, the hybrid model is more robust to the decreasing levels of phenological reference calibrations, and is particularly advantageous in retrieving crop early phenological stages (e.g., planted and emerged stages) when the phenological reference information is limited. This innovative hybrid phenology matching model, together with CPR-enabled phenological reference calibrations, holds considerable promise in revealing spatio-temporal patterns of crop phenology over extended geographical regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.