Abstract
Flavonoids, a ubiquitous group of plant polyphenols, are well-known for their beneficial effects on human health. Their phenylchromane skeletons have structural similarities to donepezil [the US FDA-approved drug used to treat Alzheimer's disease (AD)]. The objective of this study was to design and synthesize valuable agents derived from flavonoids for relieving the symptoms of AD. A variety of flavonoid derivative salts incorporating benzylpyridinium units were synthesized and several of them remarkedly inhibited acetylcholinesterase (AChE) activity in vitro. Additionally, aurone derivative salts protected against cell death resulting from t-BHP exposure in rat pheochromocytoma PC12 cells and slightly promoted neurite outgrowth. Furthermore, they potently suppressed the aggregation of amyloid-β (Aβ1-42). Our findings highlight the effectiveness of donepezil-inspired aurone derivative salts as multipotent candidates for AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.