Abstract
APV systems producing both crops and electricity are becoming popular as an alternative way of producing renewable energy in many countries with land shortage issues (e.g., South Korea). This study aims at developing a hybrid performance model of an Agrophotovoltaic (APV) system that produces crops underneath the PV modules. In this study, the physical model used to estimate solar radiation is integrated with a polynomial regression approach to forecast the amount of electricity generation and crop production in the APV system. The model takes into account not only the environmental factors (i.e., daily temperature, precipitation, humidity, and wind speed) but also physical factors (i.e., shading ratio of the APV system) related to the performance of the APV system. For more accurate modelling, the proposed approach is validated based on field experiment data collected from the APV system at Jeollanam-do Agricultural Research and Extension Services in South Korea. As a result, the proposed approach can predict the electricity generation quantity in the APV system with an R2 of 80.4%. This will contribute to the distribution of the APV system, which will increase farmers’ income as well as the sustainability of our society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.