Abstract

This research presents a hybrid approach for path planning of autonomous underwater vehicles (AUVs). During path planning, static obstacles affect the desired path and path distance which result in collision penalties. In this study, the merits of grey wolf optimization (GWO) and genetic algorithm (GA) of bionic-inspired algorithms are integrated to implement a hybrid grey wolf optimization (HGWO) algorithm which allows AUVs to reach their destination safely in an obstacle rich environment. The proposed hybrid path planner is employed for path planning of a single AUV based on collision avoidance. It uses the GA as an initialization generator to overcome the random initialization problem of GWO. In this research, the total cost is considered to be a function of path distance and collision penalties. Further, the application of the proposed hybrid path planner is extended for cooperative path planning of AUVs while avoiding collision using communication consensus. Simulation results are obtained for both a single AUV and multiple AUV path planning in a 3D obstacle rich environment using a proportional-derivative controller. The Kruskal–Wallis test is employed for a non-parametric statistical analysis, where the independence of the results given by the algorithms is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.