Abstract
To more effectively solve the complex optimization problems that exist in nonlinear, high-dimensional, large-sample and complex systems, many intelligent optimization methods have been proposed. Among these algorithms, the particle swarm optimization (PSO) algorithm has attracted scholars’ attention. However, the traditional PSO can easily become an individual optimal solution, leading to the transition of the optimization process from global exploration to local development. To solve this problem, in this paper, we propose a Hybrid Reinforcement Learning Particle Swarm Algorithm (HRLPSO) based on the theory of reinforcement learning in psychology. First, we used the reinforcement learning strategy to optimize the initial population in the population initialization stage; then, chaotic adaptive weights and adaptive learning factors were used to balance the global exploration and local development process, and the individual optimal solution and the global optimal solution were obtained using dimension learning. Finally, the improved reinforcement learning strategy and mutation strategy were applied to the traditional PSO to improve the quality of the individual optimal solution and the global optimal solution. The HRLPSO algorithm was tested by optimizing the solution of 12 benchmarks as well as the CEC2013 test suite, and the results show it can balance the individual learning ability and social learning ability, verifying its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.