Abstract

SummaryA parallel multigrid (MG) method is developed to reduce the large computational costs involved by the finite element simulation of highly viscous fluid flows, especially those resulting from metal forming applications, which are characterized by using a mixed velocity/pressure implicit formulation, unstructured meshes of tetrahedra, and frequent remeshings. The developed MG method follows a hybrid approach where the different levels of nonnested meshes are geometrically constructed by mesh coarsening, while the linear systems of the intermediate levels result from the Galerkin algebraic approach. A linear O(N) convergence rate is expected (with N being the number of unknowns), while keeping software parallel efficiency. These objectives lead to selecting unusual MG smoothers (iterative solvers) for the upper grid levels and to developing parallel mesh coarsening algorithms along with parallel transfer operators between the different levels of partitioned meshes. Within the utilized PETSc library, the developed MG method is employed as a preconditioner for the usual conjugate residual algorithm because of the symmetric undefinite matrix of the system to solve. It shows a convergence rate close to optimal, an excellent parallel efficiency, and the ability to handle the complex forming problems encountered in 3‐dimensional hot forging, which involve large material deformations and frequent remeshings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.