Abstract

A new A3B porphyrin structure, namely: 5-(4-phenoxyphenyl)-10,15,20-tris(4-pyridyl)-porphyrin was synthetized and characterized by FT-IR, UV–vis, Fluorescence, MS, 1H NMR, TLC and HPLC. Novel hybrid-silica porphyrin nanomaterials were obtained by immobilizing the porphyrin in silica supports synthesized from tetraethoxysilane, tetramethoxysilane or mixtures of tetraethoxysilane/methyltriethoxysilane. Since the behavior and performance of immobilized porphyrin molecules in the silica matrices strongly depend on the structure of the porous network, a comparative characterization of the silica support and the hybrid porphyrin-silica materials was carried out using specific physicochemical characterization methods: UV–vis, Fluorencence, FT-IR spectroscopy, thermal analysis, AFM, nitrogen adsorption and small-angle neutron scattering. The UV–vis spectra show that no protonation and aggregation of porphyrin takes place in the gels made from methyltriethoxysilane precursor. Most of the emission spectra preserve both the shape and the intensity of the corresponding free porphyrin. Due to the lack of aggregation, when using the methyltriethoxysilane precursor, the quenching of fluorescence is also diminished. No matter of the preparation method the specific surface areas increase in the following order: TEOS < TMOS < TEOS/MTES 3:1 < TEOS/MTES 2:1 < TEOS/MTES 1:1. Due to their optical properties, both the novel porphyrin and its derived hybrid materials, especially those synthesized in situ with mixtures of silica precursors TEOS/MTES will be sent for further medical trials in PDT, having characteristics of second generation photosensitizers. Due to large specific surface areas, the same materials will be used as sensitive materials in microsensors for air quality control, to detect the presence of CO, NOx, excess of CO2 and low level of O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.