Abstract
Due to the complex aerodynamic effects, the reentry trajectory optimization problem is highly nonlinear. When using sequential convex programming (SCP) methods to solve it, the iteration solution is difficult to converge. To improve this, we propose a hybrid-order soft trust region-based SCP method. We analyze the penalty effect of typical trust regions. Based on the analysis, we develop a hybrid-order soft trust region combining a small-weight first-order component and a higher-order components. To solve the subproblem reliably and effectively, we equivalently reformulate it as a second-order cone programming (SOCP) form through the relaxation technique. Combined with the line search method, we further design an SCP algorithm with guaranteed convergence under some assumptions. In the numerical simulations, the effectiveness and robustness of the proposed method have been verified using a nominal case and 200 Monte Carlo cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.