Abstract

Purpose – The purpose of this paper is to propose an improved optimization methodology of information granulation‐based fuzzy radial basis function neural networks (IG‐FRBFNN). In the IG‐FRBFNN, the membership functions of the premise part of fuzzy rules are determined by means of fuzzy c‐means (FCM) clustering. Also, high‐order polynomial is considered as the consequent part of fuzzy rules which represent input‐output relation characteristic of sub‐space and weighted least squares learning is used to estimate the coefficients of polynomial. Since the performance of IG‐RBFNN is affected by some parameters such as a specific subset of input variables, the fuzzification coefficient of FCM, the number of rules and the order of polynomial of consequent part of fuzzy rules, we need the structural as well as parametric optimization of the network. The proposed model is demonstrated with the use of two kinds of examples such as nonlinear function approximation problem and Mackey‐Glass time‐series data.Design/met...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.