Abstract

Abstract The goal of this work is to reduce power loss and improve voltage profile by formulating the optimal DG placement problem as a restricted nonlinear optimisation problem. As a novelty, the proposed hybrid algorithm, referred to as Multifactor Update-based Hybrid Model (MUHM) is constructed by merging the concepts of Lion Algorithm (LA) & Sea Lion Algorithm (Sea Lion Optimization Algorithm (SLnO). The Forward-Backward Sweep (FBSM) Model is used to calculate the power loss. Three test cases are examined for the voltage profile & loss minimization in the feeder team with DGs: “case 1(DG supplying real power alone (P), case 2 (DG supplying reactive power alone (Q) and Case 3 (DG supplying both real and reactive power)”. Application of the suggested method to various IEEE test systems, including IEEE 33, IEEE 123, and IEEE 69, respectively, is used to assess its efficacy. According, the results show that the presented work at loading percentage = 0 is 12, 15, 135, 4.65, and 8 superior to SFF, BBO, BAT, LA and SLnO, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.